If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-35x-98=0
a = 1; b = -35; c = -98;
Δ = b2-4ac
Δ = -352-4·1·(-98)
Δ = 1617
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1617}=\sqrt{49*33}=\sqrt{49}*\sqrt{33}=7\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-35)-7\sqrt{33}}{2*1}=\frac{35-7\sqrt{33}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-35)+7\sqrt{33}}{2*1}=\frac{35+7\sqrt{33}}{2} $
| 8-7(7+3x)=-188 | | 3/4(7x-1)-{2x-1-x/2}=x+3/2 | | (13+6x)=(x)-7 | | 6x+2+3x+7=180 | | 6x+2+3x+7=90 | | 1.25x=1250 | | 5x-2x+7=3 | | 5x+4+x-2+3x+7=90 | | √3-x=-2x | | 7x-100=x-10 | | -7/3w-6/5=2w-3/5 | | 10x+55=7x+100 | | 3x^2+8x=300 | | 12g=12(2/3g)-1+11 | | 12g=12(2/3g-1+11 | | 3x-10=-6x+5 | | 11x=3(3x+8 | | 12^2x-10=1 | | -276=-6(8r-2) | | 3x+17/5=2/9 | | 2-7x=+16 | | 30+3t=11t | | 6.3=x-1.2 | | -5y=210 | | 7x-4=× | | (3y-5)+2=15 | | (5x-2)=(3x+10) | | (2)=3x-11 | | 3(3x-7)=2x-15 | | -11x=8x+13 | | 2-7x=-16 | | 5(x+2)=4x+22 |